Vehicular Networks and Telematic Applications: Challenges and Opportunities

by

T. Russell Hsing (幸 多)
Telcordia Technologies, Inc. (formerly Bellcore)
Piscataway, New Jersey 08854
USA
Cell: +1 973-769-3901
E-mail Address: thsing@telcordia.com

POSTECH, Pohang, Korea
August 19~20, 2010
ISITCE 2010
Table of Contents

- Introduction
- Vehicular Infrastructure Integration & Connected Vehicles
- Major Concerns and Key Objectives
- dot-Car, dot-Road and dot-Net
- Example: UDOT IntelliDrive Program
- Vehicular Networks & Telematics Applications
- Standards
- Opportunities, Challenges and Applications in Telematics
- Global Market vs US Market in Vehicular Telematics
Transportation and Communications

3500BC

2000BC

1769

1885

2000

2020

Internet
Vehicular Information Infrastructure

- Backbone Network
- Traffic Operations Center (TOC)
- Enterprise Network Operations Center (ENOC)
- On Board Equipment (OBE)
- Road Side Equipment (RSE)
- Network-based Differential GPS (DGPS)
- Backhaul Network
- Global Positioning Service (GPS)
- Service Delivery Node (SDN)
- Dedicated Short Range Communication (DSRC)
- Traffic Operations Center (TOC)
- Network-based Differential GPS (DGPS)
Connected-Vehicle Model is Rapidly Morphing

Car & Electronic Component Life Cycles diverging
- Automobiles
 - Median life is 9.2 yrs
 - Design cycle is 3.5 yrs
- Components
 - Median life 2.0 yrs
 - Development cycle 0.5 yrs

Closed electronic components & software under assault
- Open architectures (Android, iPhone 3G, Intel’s MID)
- Carried-in devices (PNDs, cell phones, PDAs, mp3 players)

After-market devices for cars proliferate
- Mushroooming growth
- Advanced capabilities
- Have crossed “impulse” purchase thresholds
Major Concerns and Key Objectives

- Safety
- Traffic Congestion & Environment (i.e. Energy)
- Mobility Applications
- Privacy-Preserving Secured Communication
Telcom and Automotive Convergence
This is all about

.NET .CAR .ROAD

人 車 路
A Ubiquitous Communications Node

- **Proactive Maintenance and Self-Diagnosis**
- **Tire Pressure Sensor**
- **Lane Change / Merge Collision Avoidance**
- **Driver/Passenger Productivity**
- **Interior Sensors**
- **Information and Entertainment**
- **Rear-end Collision Avoidance**
- **Lane or Road Departure Warnings**
- **GIS-based Services & Situational Awareness:**
 - Local Facilities
 - Roadway Conditions
 - Traffic Information
 - Weather Information
 - Car/Driver Health
- **Emergency Response**
- **Voice Recognition and Communications**
- **Seat-Back Display**

To R. Hsing – 8
.ROAD
Ubiquitous Awareness for Transportation

- Real-Time Road Traffic and Condition Reporting to Reduce Congestion and Accidents
- Parking Information
- Road-Side System
- GIS-Based Services
- Ramp Metering for Electronic Toll Collection
- Lane-Line RFID for Location Tracking
- Lane/Road Sensors for Departure Warnings and Collision Avoidance
- Distance Marker
- EXPECT ICY ROADS USE CAUTION
- Smart Signs
- Internet
.NET Essential Infrastructure is Well Under Way

- 3G / 4G poised to deliver unprecedented:
 - Coverage
 - Bandwidth
 - Latency
 - Reliability

- Future wireless technologies to deliver explosive range & depth of services
 - Personalization
 - Immediacy
 - Anticipation
Wireless communications and Mobile Ad Hoc Networking are Enablers for

Dramatically Improved

- Safety
- Security
- Efficiency
- Convenience
- Information
- Entertainment

Based on

- Software and Applications
- Protocols
- Intelligence and Autonomy
- Computing
- Ad Hoc Networking
- Storage
- Communications Technologies and Interfaces
USDOT IntelliDrive Program

- “Advancing connectivity among vehicles and roadway infrastructure to significantly improve the safety and mobility of the U.S. transportation system”

- Future vision:
 - Vehicles and infrastructure are connected to enable cashless vehicles
 - Access to real-time data on status of vehicles & roadway transforms transportation system management and operations
Vehicular Networks & Telematics App.

- Safety/Auto Services
 - Driver Safety and Security
 - Vehicle Maintenance

- Navigation & Mobility
 - Traffic, ETA, POI, Localized Searches
 - Tolls and Parking

- Infotainment & E-Commerce
 - Digital Content
 - Social Networking

Connected Vehicle Services

Enabling Trends

- Smartphone Platforms
 - App Store Business Model
 - Tethering for OBU

- OBU and Passenger Entertainment Systems
 - Embedded wireless and sensors
 - Smartphone integration with improved HMI

- Infrastructure
 - Vehicle Infrastructure Integration (Future)
 - Cloud based delivery
Example Vehicle Applications

- Cooperative collision avoidance
- Lane-change assistance
- Road condition warning
- Intersection collision warning

- Need reliable reception of messages
- Need quick dissemination of information
Why Telematics Standards Are Important?

- **Common incident data** from various sources for easy, rapid access and sharing

- **Consistent user interfaces** and **technology-neutral protocols** can enable providers to offer telematics services with economies of scale

- **Standards Committees** (such as TIA TR-48) work with other TIA committees, national and international standards organizations, and other relevant entities to ensure work items are necessary and not duplicative.

EMS: Emergency Medical Services
OBE: Onboard Equipment
PSAP: Public Safety Answering Point
RSAP: Roadside Assistance Provider
TSP: Telematics Service Provider
Telematics Opportunities

.NET
Connectivity & Services

.CAR
Communications Node & In-Car Network

.ROAD
Critical Data & Situational Awareness

Ubiquitous Telematics Services
Telematics Challenges

- Technologies

- Standards

- Government Policy

- Business Model
Global Telematics -- Revenue (retail)
(Note: from iSuppli, 9/2008)
USA Telematics -- Revenues (retail)

Note: (from iSuppli, 9/2008)
Thank You!
감사합니다!