Postech Environmental Catalysis Laboratory

HOME Postech 학과 CONTACT US ENGLISH

  pecl
CONTACT US
서브메뉴이미지
서브배경라인
세계속의 연구중심대학 서브비쥬얼이미지
Journal
HOME :: Publication > Journal

서브배경라인 TOP 이동 

 

 







134. A combinatorial chemistry method for fast screening of perovskite-based NO oxidation catalyst, with D.Y. Yoon, E. Lim, Y.J. Kim, B.K. Cho, J.W. Choung, S. Yoo, Journal of Combinatorial Chemistry, (2014), doi: 10.1021/co5000344.


133. NO oxidation activity of Ag-doped perovskite catalysts, with D.Y. Yoon, E. Lim, Y.J. Kim, J.H. Kim, T.K. Ryu, S. Lee, B.K. Cho, J.W. Choung, S. Yoo, Journal of Catalysis, 319 (2014) 182.


132. Universal activity function for predicting performance of Pd-based TWC as function of Pd loading and catalyst mileage with S.B. Kang, B.K. Cho, C.H. Kim, Chemical Engineering Journal, 259, 519-533 (2014).


131. Ultra low temperature CO and HC oxidation over Cu-based mixed oxides for future automotive applications, with I. Heo, M.H. Wiebenga, J.R. Gaudet,  W. Li, C.H. Kim, Applied Catalyst B: Environmental, 160-161, 365-373, (2014).


130. Bifunctional Ag-based catalyst for NOx reduction with E-diesel fuel with P.S. Kim, B.K. Cho, J.W. Choung, ChemCatChem, 6, 1570-1574 (2014).


129. Effect of CO2 on deNOx activity of CuSSZ13 catalyst for NH3/SCR with Y.J. Kim, K.M. Min, J.K. Lee, S.B. Hong, B.K. Cho, ChemCatChem,  6, 1186-1189 (2014).

 

128. Hydrothermal stability of CuSSZ13 for reducing NOx by NH3, with Y.J. Kim, J.K. Lee, K.M. Min, S.B. Hong, B.K. Cho, Journal of Catalysis, 311, 447-457, (2014).

 

127. Detailed reaction kinetics for double-layered Pd/Rh bimetallic TWC monolith catalyst, with S.B. Kang, S.J. Han, B.K. Cho, C.H. Kim, S.H. Oh, Chemical Engineering Journal, 241, 273-287, (2014).

 

126.Effect of speciated HCs on the performance of modern commercial TWCs, with S.B. Kang, S.B. Nam, B.K. Cho, C.H. Kim, S.H. Oh, Catalysis Today, in press (2014).


125. Effect of aging atmosphere on thermal sintering of modern commercial TWCs, with S.B. Kang, S.J. Han, S.B. Nam, B.K. Cho, C.H. Kim, S.H. Oh, Topics in Catalysis, 56, 298-305, (2013).

 

124. Effect of H2 on deNOx performance of HC-SCR over Ag/Al2O3: Morphological, chemical, and kinetic changes, with P.S. Kim, M.K. Kim, B.K. Cho, S.H. Oh, Journal of Catalysis, 301, 65-76, (2013).

           

123. Combination of photocatalysis and HC/SCR for improved activity and durability of DeNOx catalysts, with I. Heo, M.K. Kim, S. Sung, B.K. Cho, K.L. Olson, W. Li, Environmental Science and Technology, 47, 3657-3664, (2013).

 

122. S ynthesis and Catalytic Behavior of Ferrierite Zeolite Nanoneedles, with Y. Lee, M.B. Park, P.S. Kim, A. Vicente, C. Fernandez, S.B. Hong, ACS Catalysis, 3, 617-621, (2013).  

 

121.  Simulation of OHC/SCR process over Ag/Al2O catalyst for removing NOx from diesel engine, with M.K. Kim, P.S. Kim, H.J. Kwon, B.K. Cho, S.H. Oh, Chemical Engineering Journal 209, 280–292, (2012).   

 

120.  Activity function describing the effect of Pd loading on the catalytic performance of modern commercial TWC, with S.B. Kang, S.J. Han, S.B. Nam, B.K. Cho, C.H. Kim, S.H. Oh, Chemical Engineering Journal, 207–208, 117-121 (2012).    

      

119.  Mn-Fe/ZSM5 as a low-temperature SCR catalyst to remove NOx from diesel engine exhaust, with Y.J. Kim, H.J. Kwon, I. Heo, B.K. Cho, J.W. Choung, M.-S. Cha, G.K. Yeo, Applied Catalysis B: Environmental, 126, 9-21 (2012).  

 

118. Selective catalytic reduction of NOx by diesel fuel: Plasma-assisted HC/SCR system, with B.K. Cho, J.-H. Lee, C.C. Crellin, K.L. Olson, D.L. Hilden, M.K. Kim, P.S. Kim, I. Heo, S.H. Oh, Catalysis Today, 191, 20-24, (2012).                

 

117. Autocatalytic synergism observed during lean-NOx reduction with a bifunctional reductant over Ag/Al2O3 catalyst, with, P.S. Kim, M.K. Kim, B.K. Cho, I.-S. Nam , Journal of Catalysis, 292, 44-52, (2012).            

 

116.  Oxidation of formaldehyde over Pd/Beta catalyst, with S.J. Park , I. Bae, I.-S. Nam , B.K. Cho, S.M. Jung, J.-H. Lee, Chemical Engineering Journal, 195-196, 392-402 (2012).

115.  Activity and thermal stability of Rh-based catalytic system for an advanced modern TWC, with I. Heo, D.Y. Yoon, B.K. Cho, I.-S. Nam , J.W. Choung, S. Yoo , Applied Catalysis B: Environmental, 121-122, 75-87 (2012).

 

114. Enhanced NOx reduction and byproduct removal by (HC + OHC)/SCR over multifunctional dual-bed monolith catalyst, with M. K. Kim, P. S. Kim, B. K. Cho, S. H. Oh, Catalysis Today, 184, 95-106 (2012).  

 

113.   Iron-substituted TNU-9, TNU-10, and IM-5 zeolites and their steam-activated analogs as catalysts for direct N2O decomposition, with J. K. Lee, Y. J. Kim, H.-J. Lee, S. H. Kim, S. J. Cho, S. B. Hong, Journal of Catalysis, 284, 23-33 (2011).

 

112. A co-templating route to the synthesis of Cu SAPO STA-7, giving an active catalyst for the selective catalytic reduction of NO, with A. L. Picone, S. J. Warrender, A. M. Z. Slawin, D. M. Dawson, S. E. Ashbrook, P. A. Wright, S. P. Thompson, L. Gaberova, P. L. Llewellyn, B. Moulin, A. Vimont, M. Daturi, M. B. Park, S. K. Sung, S. B. Hong, Microporous and Mesoporous Materials, 146, 36-47 (2011). 

 

111. Tetrahedral atom ordering in a zeolite framework: A key factor affecting its physicochemical properties, with J. Shin, D. S. Bhange, M. A. Camblor, Y. Lee, W. J. Kim, S. B. Hong, Journal of the American Chemical Society, 133, 10587-10598 (2011).

 

110.  DeNOx Performance of Ag/Al2O3 Catalyst using Simulated Diesel Fuel-Ethanol Mixture as Reductant, with M. K. Kim, P. S. Kim, J. H. Baik, B. K. Cho, S. H. Oh, Applied Catalysis B: Environmental, 105, 1-14 (2011).   

 

109. Activity function for describing alteration of Three-Way Catalyst performance over Palladium-only Three-Way Catalysts by catalyst mileage, with S. B. Kang, H. J. Kwon, Y. I. Song, S. H. Oh, Industrial & Engineering Chemistry Research, 50, 5499-5509 (2011).

 

108. Kinetic parameter estimation of a commercial Fe-zeolite SCR, with T. J. Wang, S. W.   Baek, H. J. Kwon, Y. J. Kim, M.-S. Cha, G. K. Yeo, Industrial & Engineering Chemistry Research, 50, 2850-2864 (2011).

 

107. Effect of hydrocarbon slip on NO removal activity of CuZSM5, FeZSM5 and V2O5 /TiO2 catalysts by NH3 , with I. Heo, Y. Lee, J. W. Choung, J.-H. Lee, H.-J. Kim, Microporous and Mesoporous Materials, 141, 8-15 (2011).

 

106. DeNOx performance of Ag/Al2O3 catalyst by n-dodecane: Effect of calcination temperature, with D. Y. Yoon, J.-H. Park, H.-C. Kang, P. S. Kim, G. K. Yeo, J. K. Kil, M.-S. Cha, Applied Catalysis B: Environmental, 101, 275-282 (2011).

 

105. Simulation of a nonisothermal modern three-way catalyst converter, with H. J. Kwon, J. H. Baik, S. B. Kang, B. J. Yoon, S. H. Oh, Industrial & Engineering Chemistry Research, 49, 7039–7051 ( 2010).

 

104.  The hydrothermal stability of paper-like ceramic fiber and conventional honeycomb-type cordierite substrates washcoated with Cu-MFI and V2O5 /TiO2 catalysts for the selective reduction of NOx by NH 3 , with H. J. Kwon, Y. J. Kim, S. M. Jung, J.-H. Lee, Topics in Catalysis, 53, 439–446 (2010).

 

103. Hydrotalcite as a support for NOx trap catalyst, with S. J. Park, H. A. Ahn, I. Heo, J. H. Lee, Y. K, Youn, H.-J. Kim, Topics in Catalysis, 53, 57–63 (2010).

 

102. Fast colorimetric assay for screening NSR catalyst, with J.-H. Park, S. J. Park, Catalysis Surveys from Asia , 14, 11–20 (2010).

 

101. High deNOx performance of Mn/TiO 2 catalyst by NH3 , with Y. J. Kim, H. J. Kwon,   J. W. Choung, J. K. Kil, H.-J. Kim, M.-S. Cha, G. K. Yeo, Catalysis Today, 151, 244–250 (2010).

 

100.  The alteration of the performance of field-aged Pd-based TWCs towards CO and C3H6 oxidation, with I. Heo, J. W. Choung, P. S. Kim, Y. I. Song, C. B. In, G. K. Yeo, Applied Catalysis B: Environmental. 92, 114-125 (2009).

 

99. Promising zeolite-type hydrocarbon trap catalyst by a knowledge-based combinatorial approach, with J. –H. Park, S. J. Park, H, A, Ahn G.   K. Yeob, J. K. Ki, Y. K. Youn, Microporous and Mesoporous Materials 117, 178-184 (2009).

 

98. Enhancement effect of water on oxidation reactions over commercial three-way catalyst, with H. J. Kwon, J. H. Baik, Y. T. Kwon, S. H. Oh, Chemical Engineering Journal, 141, 194-203 (2008).

 

97.   N2O decomposition over wet- and solid-exchanged Fe-ZSM-5 catalysts, with J. –H. Park, J. –H. Choung, S. –W. Ham, Appl. Catal. B 78, 342-354 (2008).

 

96. TNU-9: a novel medium-pore zeolite with 24 topologically distinct tetrahedral sites, with S. B. Hong, H. –K. Min, C. –H. Shin, S. J. Warrender, P. A. Wright, P. A. Cox, F. Gramm, Ch. Baerlocher, L. B. McCusker, Z. Liu, T. Ohsuna, O. Terasaki, Studies in Surface Science and Catalysis, 170A, 151-159 (2007).

 

95. Detailed reaction kinetics over commercial three-way catalysts, with H. J. Kwon, J. H. Baik, Y. T. Kwon, S. H. Oh, Chemical Engineering Science, 62, 5042-5047 (2007).

 

94. Effects of catalyst aging on the activity and selectivity of commercial three-way catalysts, with J. H. Baik, H. J. Kwon, Y. T. Kwon, S. H. Oh, Topics in Catalysis, 42-43, 337-340 (2007).

 

93. Role of cobalt on r-Al2O3 based NOx storage catalyst, with J –H. Park, H. J Cho, S. J. Park, G.   K. Yeo, J. K. Kil, Young Kee Youn, Topics in Catalysis, 42-43, 61-64 (2007).

 

92. A fast and quantitative assay for developing zeolite-type hydrocarbon trap catalyst, with J. –H. Park, S. J.   Park, G. K. Yeo, J. K. Kil, Y. K. Youn, Microporous and Mesoporous Materials 101, 264–270 (2007).

 

91. Role of cerium in promoting the stability of CuHM catalyst against HCl to reduce NO with NH3 , with J.W. Choung, Appl. Catal A 312, 165-174 (2006).

 

90. Synergistic Roles of NO and NO2 in Selective Catalytic Reduction of NOx by NH3, with J.H. Baik, J.H. Roh , S.D. Yim,  J.-H. Lee, B.K. Cho and S.H. Oh, Stud. Surf. Sci. Catal, 159, 441-444 (2006).

 

89. A mathematical model for the design of extruded honeycomb reactor for selective catalytic reduction of NOx, with J.-Y. Koh, J.W. Choung, J.H. Baik , S.D. Yim, S.W. Ham, J.B. Lee, Stud. Surf. Sci. Catal. 159, 445-448 (2006).

 

88. Effect of promoters including tungsten and barium on the thermal stability of V2O5/sulfated TiO2 catalyst for NO reduction by NH3, with J.W. Choung, S.-W. Ham, Catal. Today 111(3-4), 242-247 (2006).

 

87. Characteristics of copper ion exchanged mordenite catalyst deactivated by HCl for the reduction of NOx with NH3, with J.W. Choung, Appl. Catal. B 64(1-2), 42-50 (2006).

 

86. Modeling of Monolith Reactor Washcoated with CuZSM5 Catalyst for Removing NO from Diesel Engine by Urea, with J.H. Baik, S.D. Yim,  Y.S. Mok, J.-H. Lee, B.K Cho, S.H. Oh, Ind. Eng. Chem. Res., 45(15), 5258-5267 (2006).

 

85. Hydrothermal stability of CuZSM5 catalyst in reducing NO by NH3 for the urea selective catalytic reduction process, with J.-H. Park, H.J. Park , J.H. Baik, C.-H. Shin, J.-H. Lee, B.K. Cho, S.H. Oh, J. Catal., 240, 47–57 (2006).

 

84. Colorimetric assay for a fast parallel screening of NOx storage, with J.-H. Park, M.S. Han, S.J. Park, D.H. Kim, G.K. Yeo, J.K. Kil, Y.K. Youn, J. Catal., 241, 470-474 (2006).

 

83. Diquaternary (CH3)2(C2H5)N+(CH2)nN+(C2H5)(CH3)2 and (C2H5)2(CH3)N+(CH2)n-+(CH3)(C2H5)2 ions with n=4-6 as structure-directing agents in zeolite synthesis, with B. Han, C.-H. Shin, S.B. Hong,  Studies in Surface Science and Catalysis, 158, 183-190 (2005).

 

82. Heating Element of an Air Preheater in a Utility Boiler as an SCR Reactor Removing NO by NH3, with Jae Ho Choi, Moon Hyeon Kim, Industrial & Engineering Chemistry Research, 44 707-714 (2005).

 

81. Characteristics of wet and solid ion exchanged Co–ferrierite catalysts for the reduction of NO using methane, with Joo-Hyoung Park , Chan Hee Park , Applied Catalysis A: General 277, 271-279 (2004).

 

80. Reinvestigation into the synthesis of zeolites using diquaternary alkylammonium ions (CH3)3N+(CH2)nN+(CH3)3 with n=3–10 as structure-directing agents, with Song-Ho Lee, Chae-Ho Shin, Doo-Kyung Yang, Sang-Doo Ahn, and Suk Bong Hong , Microporous and Mesoporous Materials 68, 97-104 (2004).

 

79. Characteristics of vanadia on the surface of V2O5/Ti-PILC catalyst for the reduction of NOx by NH3", with H. J. Chae, S.-W. Ham and S. B. Hong, Appl. Catal. B 53, 117-126 (2004).

 

78. Synthesis, Structure Solution, Characterization, and Catalytic Properties of TNU-10: A High-Silica Zeolite with the STI Topology, with Hong, S. B., Lear, E. G., Wright, P. A., Zhou, W., Cox, P. A., Shin, C. -H., Park, J. H., J. Am. Chem. Soc., 126, 5817-5826 (2004).

 

77. Decomposition of Urea into NH3 for the SCR Process, with S. D.Yim, S. J.Kim, J. H. Baik, Y. S. Mok, J.-H.Lee, B. K. Cho, and Se H. Oh, Ind. Eng. Chem. Res., 43, 4856-4863 (2004).

 

76. Control of NOx emissions from diesel engine by selective catalytic reduction (SCR) with urea, with J. H. Baik, S. D. Yim, Y. S. Mok, J.-W.Lee, B. K. Cho, and S. H. Oh,  Topics in Catalysis, 30/31, 37-41 (2004).

 

75. Characteristics of chromium oxides supported on TiO2 and Al2O3 for the decomposition of perchloroethylene, with S.D. Yim,  Journal of Catalysis, 221, 601-611 (2004).

 

74. Physicochemical Characteristics of Ti-PILC as a catalyst support for the reduction of NO by NH3, with H.J. Chae and S.B. Hong,  Studies in Surface Science and Catalysis, 146, 697 (2003).

 

73. Effect of support morphology on the sulfur tolerance of V2O5/Al2O3 catalyst for the reduction of NO by NH3, with B.-W. Soh , Ind. Eng. Chem. Res., 42(13), 2975-2986 (2003).

 

72.  Effect of promoters including WO3 and BaO on the activity and durability of V2O5/sulfated TiO2 catalyst for NO reduction by NH3, with S.T. Choo, S.D. Yim, S.-W. Ham, and J.B. Lee, App. Catal. B:Environ., 44, 237-252 (2003).

 

71. Nonisothermal Plasma-Enhanced Catalytic Removal of Nitrogen Oxide over V2O5/TiO2 and Cr2O3/TiO2  with Y. S. Mok, D. J. Koh and K.T. Kim, Ind. Eng. Chem. Res., 42(13), 2960-2967 (2003).

 

70. Zeolite synthesis in the presence of flexible diquaternary alkylammonium ions (C2H5)3N+(CH2)nN+(C2H5)3 with n=3-10 as structure-directing agents, with S.H. Lee, C.H. Shin, T.J. Park, B. Han and S.B. Hong, Micro. & Meso. Mat., 60, 237-249 (2003).

 

69. Effect of Pd on the Water Tolerance of Co-Ferrierite Catalyst for NO Reduction by CH4, with T.J. Lee, S.W. Ham, Y.S. Baek and K.H. Shin, App. Catal. B:Environ., 41:1-2, 115-127 (2003).

 

68. Modeling of Pulsed Corona Discharge Process for the Removal of Nitric Oxide and Sulfur Dioxide, with Y.S. Mok, The Chemical Engineering Journal, 85, 87-97 (2002).

 

67. Selective Catalytic Reduction of Nitrogen Oxides by Ammonia, with S.W. Ham, Catalysis, Royal Society of Chemistry (Senior Reporter: J.J. Spivey), 16, Chapter 7, 236-271 (2002).

 

66. A Pilot Plant Study for Catalytic Decomposition of PCDDs/PCDFs over supported Chromium Oxide Catalysts, with S. D. Yim and D. J. Koh,  Catalysis Today, 75:1-4, 269-276 (2002).

 

65. Decomposition of Volatile Organic Compounds and Nitric Oxide by Nonthermal Plasma Discharge Process, with Y.S. Mok, C.M. Nam and M.H. Cho, Transactions on Plasma Science, 30:1, 408-416 (2002).

 

64. Molecular Conformation of Hydrogen-Bonded Ethylene Glycol in Sodalite: A 1H CRAMPS NMR, IR, and 2H NMR Study, with D.-Y. Han, A. J. Woo and S. B. Hong,  J. Phys. Chem.B 106, 6206-6210 (2002).

 

63. Synthesis and characterization of zeolite ZSM-25, with S.B. Hong, W.C. Paik, W.M. Lee, S.P. Kwon, C.-H. Shin, and B.-H. Ha,  Studies in Surface Science and Catalysis, 135, 186 (2001).

 

62. Physicochemical characteristics of pillared interlayered clays, with H.J. Chae, S.W. Ham and S.B. Hong, Catal. Today, 68, 31-40 (2001).

 

61. Deactivation of Chromium Oxide Catalysts for the Removal of Perchlroethylene (PCE), with S.D. Yim and K. Chang, Studies in Surface Science and Catalysis, 139, 173-180 (2001)

 

60. Use of V2O5/Ti-PILC Catalyst for the Reduction of NO by NH3, with H.J. Choi, H.S. Yang S.L. Song and I.K. Hur, Journal of Chemical Engineering of Japan, 34(2), 148-153 (2001).

 

59. Deactivation of Mordenite-Type Zeolite Catalyst by HCl for the Reduction of NO with NH3, with G.G. Park, H.J. Chae, J.W. Choung and K.H. Choi, Micro. & Meso. Mat., 48,337-343 (2001).

 

58. Catalytic Removal of Perchloroethylene (PCE) over supported Chromium Oxide Catalysts, with S.D. Yim, K. Chang, D.J. Koh and Y.G. Kim, Catal. Today, 63, 215-222 (2000).

 

57. Solid-state NMR Evidence for the presence of two crystallographically distinct TetrahedralSites in Zeolite Merlinoite, with Suk Bong Hong, Duk-Young Han and Oc Hee Han, J. Chem. Soc., Chem. Commun., 1719-20 (2000).

 

56. Removal of NO and Formation of Byproducts in a Positive-Pulsed Corona Discharge Reactor, with Y.S. Mok, J.H. Kim and S.W. Ham, Ind. Eng. Chem. Res., 39(10), 3938-3944 (2000).

 

55. Effect of Si/Al ratio of Mordenite and ZSM-5 type Zeolite Catalysts on Hydrothermal Stability for NO Reduction by Hydrocarbons, Studies in Surface Science and Catalysis, 130, 1511-1516 (2000).

 

54. Characteristics of V2O5 supported on Sulfated TiO2 for Selective Catalytic Reduction of NO by NH3, with S.T. Choo, Y.G. Lee, S. Ham and J. Lee, App. Catal. A, 200, 177-188 (2000).

 

53. Direct Use of Kinetic Parameters for Modeling and Simulation of SCR Process, with H.J. Chae, S.T. Choo, H. Choi, H.S. Yang and S.R. Song, Ind. Eng. Chem. Res., 39(5), 1159-1170 (2000).

 

52. Effect of the Catalyst Supports on the Removal of Perchloroethylene (PCE) over Chromium Oxide Catalysts, with S.D. Yim, D.J. Koh and Y.G. Kim, Catal. Lett., 64, 201-207 (2000).

 

51. Positive Pulsed Corona Discharge Process for Simultaneous Removal of SO2 and NOx from Iron-Ore Sintering Flue Gas, with Y.S. Mok, IEEE Trans. Plasma Sci., 27(4), 1188-1196 (1999).

 

50. Morphological Impact of V2O5/Al2O3 Catalyst on the Deactivation by SO2 for the Reduction of NO with NH3, with B.-W. Soh, J.-B. Lee and Y.G. Kim, Studies in Surface Science and Catalysis, 126, 389-396 (1999).

 

49. Hydrothermal Stability of Dealuminated Mordenite type Zeolite Catalysts for the Reduction of NO by C3H6 under Lean-burn Condition, with S.Y. Chung, S.-H. Oh, M.H. Kim and Y.G. Kim, Catal. Today, 54, 521-529 (1999).

 

48. Removal of Nitric Oxide in a Pulsed Corona Discharge Reactor, with Y.S. Mok, Chem. Eng. Technol. 22, 527-532 (1999).

 

47. Characteristics of V2O5/Ti-PILC catalyst for the Reduction of NO by NH3, with H.J. Chae, Y.G. Kim, H.S. Yang, H.C. Choi and S.L. Song, Studies in Surface Science and Catalysis, 125, 595-602 (1999).

 

46. Mathematical Analysis of Pulsed Corona Discharge Process employed for Removal of Nitrogen Oxides, with Y.S. Mok and S.W. Ham, IEEE Trans. Plasma Sci., 26(5), 1566-1574 (1998).

 

45. Characteristics of Mordenite-Type Zeolite Catalysts Deactivated by SO2 for the Reduction of NO with Hydrocarbons, with M.H. Kim and Y.G. Kim, J. Catal., 179, 350-360 (1998).

 

44. Role of Organic Chemical Additives in Pulsed Corona Discharge Process for Conversion of NO, Journal of Chemical Engineering of Japan , 31(3), 391-397 (1998).

 

43. Evaluation of Energy Utilization Efficiencies for SO2 and NO Removal by Pulsed Corona Discharge Process, with Y.S. Mok and S.W. Ham, Plasma Chemistry and Plasma Processing, 18(4), 535-550 (1998).

 

42. The Characteristic of a Copper-exchanged Natural Zeolite for NO Reduction by NH3 and C3H6, with Moon Hyeon Kim and Y.G. Kim, Catal. Today, 44(1-4), 57-65 (1998).

 

41. Bahavior of Chromium Oxide on MgO or MgF2, with D.H. Cho, G.H. Cha, J.S. Lee, Y.G. Kim and J.S. Chung,  J. Phys. Chem. A, 102(41), 7913-7918 (1998).

 

40. Formation of Isocyanate Species on the Surface of Mordenite-type Zeolite Catalysts for the Reduction of NO by Hydrocarbons with H2O, with Moon Hyeon Kim and Y. G. Kim, J. Chem. Soc. Chem. Commun.,1771-1772 (1998).

 

39. Kinetic Analysis of Mixed Alcohol Synthesis from Syngas over K/MoS2 Catalyst, with Tae Yun Park and Y. G. Kim, Ind. Eng. Chem., Research, 36(12), 5246-5257 (1997).

 

38. Sulfur Tolerance of Cu- and H-Mordenite Zeolite Catalysts for the Reduction of NO by Hydrocarbons, with Moon Hyun Kim and Young Gul Kim, Studies in Surface Science and Catalysis, 111, 213-224 (1997).

 

37.   A Pilot Plant Study for Selective Catalytic Reduction of NO by NH3 over Mordenite-Type Zeolite Catalysts, with Soo Tae Choo, Dong Jun Koh and Young Gul Kim, Catal. Today, 38(2), 181-186 (1997).

 

36. The Role of Water for NO Reduction by Hydrocarbons over Copper Ion-Exchanged Mordenite-Type Zeolite Catalysts, with Moon Hyeon Kim and Young Gul Kim, Studies in Surface Science and Catalysis, 105, 1493-1500 (1997).

 

35. Water Tolerance of Mordenite-Type Zeolite Catalysts for Selective Reduction of Nitric Oxide by Hydrocarbons, with Moon Hyeon Kim and Young Gul Kim, Appl. Catal. B, 12, 125-145 (1997).

 

34. Removal of H2S and/or SO2 by catalytic conversion technologies, with Jong Shik Chung, Sang Chul Paik, Hee Sung Kim and Deuk Sung Lee, Catal. Today, 35, 37-43 (1997).

 

33. Effect of Oxygen on Selective Catalytic Reduction of NO by NH3 over Copper Ion Exchanged Mordenite-Type Zeolite Catalyst, with Sung Won Ham, Hoon Choi and Young Gul Kim, Catal. Lett., 42, 35-40 (1996).

 

32. TPD Study of Mordenite-Type Zeolites for Selective Catalytic Reduction of NO by NH3, with Eun-Young Choi and Young Gul Kim,  J. Catal., 161, 597-604 (1996).

 

31. Mathematical Modeling of the Prereduction Process of Iron Ore in a Circulating Fluidized Bed, with Y. Hahn, Y.H. Im, K.J. Kim, D.G. Park, I.O. Lee and K.S. Chang, Developments in Chemical Engineering & Mineral Processing, 4(1/2), 23-37 (1996).

 

30. Honeycomb Reactor Washcoated with Mordenite Type Zeolite Catalysts for the Reduction of NOx by NH3, with H. Choi, S. Ham and Y. G. Kim,  Ind. Eng. Chem. Res., 35(1), 106-112 (1996).

 

29. Selective Catalytic Reduction of Nitrogen Oxide by Hydrocarbons over Mordenite Type Zeolite Catalysts, with Moon Hyeon Kim and Y. G. Kim, Appl. Catal. B, 6(4), 297-310 (1995).

 

28. Effect of Copper Contents on Sulfur Poisoning of Copper Ion-Exchanged Mordenite for NO Reduction by NH3, with S. Ham, H. Choi and Y.G. Kim, Ind. Eng. Chem. Research, 34(5), 1616-1623 (1995).

 

27. Supported PbCl2-CuCl2 Catalysts for Carbon Monoxide Oxidation, 1.Effects of catalyst composition and reaction conditions, with K.D. Kim, J.S. Chung, J.S. Lee, S.G. Ryu and Y.S. Yang, Appl. Catal. B, 5, 103-115 (1994).

 

26. Deactivation of Copper Ion Exchangde Mordenite Catalysts by SO2 for NO Reduction with NH3 : Role of copper, with S.-W. Ham, H. Choi and Y.G. Kim, Studies in Surface Science and Catalysis, 88, 441-448 (1994).

 

25. Role of Alkali Promoters in K/MoS2 Catalysts for CO-H2 Reactions, with  J.S. Lee, S. Kim, K.H. Lee, J.S. Chung, Y.G. Kim and H.C. Woo, Appl. Catal. A, 110, 11-25 (1994).

 

24. Surface Species on the oxidized K2CO3/MoS2 and Their Effects on Catalytic Carbon Monoxide Hydrogenation, with H.C. Woo, J.C. Kim, J.S. Lee, J.S. Chung and Y.G. Kim, Appl. Catal. A, 104, 199-214 (1993).

 

23. Oxidized K2CO3/MoS2 as a Novel Sulfur-resistant Catalyst for Fischer-Tropsch reaction, with H.C. Woo, Y.G. Kim, J.S. Chung and J.S. Lee, Catal. Lett., 20, 221-229 (1993).

 

22. Structure and Distribution of Alkali Promoter in K/MoS2 Catalysts and their Effects on Alcohol Synthesis from Syngas, with H.C. Woo, J.S. Lee, J.S. Chung and Y.G. Kim, J. Catal., 142, 672-690 (1993).

 

21. Structure of Mn-Zr Mixed Oxide Catalysts and their Catalytic Properties in the CO Hydrogenation Reaction, with D.J. Koh, J.S. Chung, Y.G. Kim, J.S. Lee and S.H. Moon, J. Catal., 138, 630-639 (1992).

 

20. Room-Temperatrue Oxidation of K2CO3/MoS2 Catalysts and its Effects on Alcohol Synthesis from CO and H2, with H.C. Woo, J.S. Lee, J.S. Chung, K.H. Lee and Y.G. Kim, J. Catal., 138, 525-535 (1992).

 

19. Alkali-Promoted MoS2 Catalysts for Alcohol Synthesis : The Effect of Alkali Promotion and Preparation Condition on Activity and Selectivity, with H.C. Woo, T.Y. Park , Y.G. Kim, J.S. Lee and J.S. Chung, Studies in Surface Science and Catalysis, 75, 2749-2752 (1992).

 

18. Deactivation of Copper-ion exchanged Mordenite Type Zeolite Catalyst by Sulfur Dioxide for NO Reduction by NH3, with Sung-Won Ham, H. Choi and Y.G. Kim, Catal. Today, 11, 611-621 (1992).

 

17. An X-ray Absorption Study of Copper Ion Exchanged H-Mordenite for Selective Catalytic Reduction of NO by NH3, with E.Y. Choi, J.S. Chung, Y.G. Kim, J.S. Lee and M. Nomura, J. Mol. Catal., 69, 247-258 (1991).

 

16. Sulfur Tolerance of Mordenite Type Zeolite Containing Cupric Ions for NO Reduction by NH3, with Sung-Won Ham, Hoon Choi and Young Gul Kim, Studies in Surface Science and Catalysis, 68, 573-576 (1991).

 

15. Mixed Alcohol Synthesis from Carbon Monoxide and Dihydrogen over Potassium-Promoted Molybdenum Carbide Catalysts, with H.C. Woo, K.Y. Park ,  Y.G. Kim, J.S. Chung and J.S. Lee, Appl. Catal., 75(2), 267-280  (1991).3

 

14. Activity and Durability of Natrual Zeolite Containing Cupric Ions for NO Reduction by NH3, with Ung-Cheon Hwang, Sung-Won Ham and Young Gul Kim, Catalytic Science & Technology, 1, 165-170 (1991).

 

13. Preparation and Benzene Hydrogenation Activity of Supported Molybdenum Carbide Catalyts, with J.S. Lee, M.H. Yeom, K.Y. Park , J.S. Chung, Y.G. Kim and S.H. Moon, J. Catal., 128, 126-136 (1991).

 

12. Stoichiometry for NO Reduction by NH3, J. Catal. 119, 269 (1989).

 

11.  NO Reduction by NH3 on Copper Exchanged H-Mordenite, with J.W. Eldridge and J.R. Kittrell, Studies in Surface Science and Catalysis, 38, 589-600 (1988).

 

10.  Stochastic Modeling of Catalyst Deactivation by Site Coverage, with J.W. Beeckman and G.F. Forment, Studies in Surface Science and Catalysis, 34, 365-379 (1987).

 

9.  Catalyst Deactivation by Site Coverage through Multi-site Reaction Mechanism, with G.F. Froment, J. Catal., 108, 271-282 (1987).

 

8. Deactivation of a Vanadia Alumina Catalyst for NO Reduction by NH3, with J.W. Eldridge and J.R. Kittrell, Ind. Eng. Chem., Prod. Res. Dev., 25, 192-197 (1986).

 

7. Model of Temperature Dependence of a Vanadia Alumina Catalyst for NO Reduction by NH3,  -Fresh Catalyst-, with J.W.  Eldridge and J.R. Kittrell, Ind. Eng. Chem., Prod. Res. Dev., 25, 186-192 (1986).

 

6. On Stochastic Model of Filtering Process, with G.F. Froment, AIChE J., 31, 1582 (1985).

 

5. Coke Tolerance of Catalytic Reforming Catalysts, with J.W. Eldridge and J.R. Kittrell, Ind. Eng. Chem., Prod. Res. Dev., 24, 544-549 (1985).

 

4. Consistency of Kinetics and Deactivation Models, with J.W. Eldridge and J.R. Kittrell, Chem. Eng. Commun., 31, 121-129 (1984).

 

3. Use of Catalyst Coke Content in Deactivation Modeling, with J.R. Kittrell, Ind. Eng. Chem. Proc. Des. Dev., 23, 237-242 (1984).

 

2. Modeling Laboratory Deactivation Data, with J.R. Kittrell, Ind. Eng. Chem., Proc. Des. Dev., 21, 778-781 (1982).

 

1. The Hydrology of Overland Flow in Wetlands, with R.H. Kadlec, D.E. Hammer, and J.O. Wilkes, Chem. Eng. Commun., 9, 331-344 (1981).