회원로그인 login

로그인영역
Advanced Electron Microscopy



1. Course Information
Instructor: Prof. Sang Ho Oh
Course #: AMSE 609
Credit: 3
Hours: Tuesday/Thursday 09:30-10:45
Engineering Bldg. #1, Room 102



2. Course Objectives
This course aims to provide physical background and to deepen the understanding of the image formation theories in 
transmission electron microscopy (TEM). The lecture covers: 1) the diffraction contrast imaging routinely used in 
conventional TEM and its application to defect analyses, 2) the phase contrast imaging of high resolution TEM (HRTEM)
 and its quantitative interpretation based on image simulation techniques and 3) scanning TEM (STEM) Z- contrast 
image theory and the image simulation of HAADF. The last part of lecture is devoted to the basic theory and recent 
progress in electron spectroscopy techniques with particular emphasis on spectroscopic imaging techniques with 
characteristic X-ray and electrons with energy loss.



3. Prerequisites & Require
This course is open to graduate students (prospective electron microscopists) who have taken the introductory level 
TEM course (AMSE 608).



4. Course Materials
Lecture notes
1. Brent Fultz, James M. Howe, “Transmission Electron Microscopy and Diffractometry of Materials”, 3rd edition, 
Springer (2008).
2. David B. Williams, C. Barry Carter, “Transmission Electron Microscopy”, 2nd edition, Springer (2009).
3. John C. H. Spence, “High-Resolution Electron Microscopy”, 3rd edition, Oxford Science Publications, (2003)
4. Peter R. Buseck, John M. Cowley, Leory Eyring, “High-resolution Transmission Electron Microscopy and Associated Techniques”, Oxford University Press (1998).
5. Ludwig Reimer, Helmut Kohl, “Transmission Electron Microscopy: Physics of Image Formation”, 5th edition, 
Springer (2008).
6. Charles Kittel, “Introduction to Solid State Physics”, 8th edition, Wiley (2004).



5. Course Plan
I. ELASTIC ELECTRON SCATTERING: IMAGING
  1. Diffraction contrast
    1.1. Kinematical diffraction theory     1.2. Dynamical diffraction theory
    1.3.  Defect analysis: Dislocations and twins
  2. Phase contrast
    2.1. Image formation theory of HRTEM
    2.2. Simulation of HRTEM images
    2.3. Aberration correction
    2.4. Phase retrieval by exit-wave reconstruction of HRTEM
    2.5. Other phase contrast techniques: Electron holography and phase plate
  3. STEM Z-contrast
    3.1. Image formation theory of HADDF Z-contrast
    3.2. Image simulation of HAADF Z-contrast
II. INELASTIC ELECTRON SCATTERING: SPECTROSCOPY
  1. EELS and EDS
  2. Spectroscopic imaging