Lecture 3

Diffraction from Crystals

“Shape Factor”

- Fultz & Howe, Chap. 5
- Williams & Carter, Chap. 17
- Reimer, Chap. 7
Shape Factor
“Crystal size effect”

- **Scattered wave:**
 \[\psi(\Delta k) = \sum_{r_g} \frac{\nu}{lattice} F(\Delta k) \exp(-2\pi i \Delta k \cdot r_g) \]

- **Shape factor:**
 \[S(\Delta k) = \sum_{r_g} \frac{\nu}{lattice} \exp(-2\pi i \Delta k \cdot r_g) \]

- Location of each unit cell:
 \[r_g = n_x a \hat{x} + n_y b \hat{y} + n_z c \hat{z} \]

- \(\Delta k \) components:
 \[\Delta k = \Delta k_x \hat{x} + \Delta k_y \hat{y} + \Delta k_z \hat{z} \]

\[
S(\Delta k) = \sum_{n_x=0}^{N_x-1} \sum_{n_y=0}^{N_y-1} \sum_{n_z=0}^{N_z-1} \exp\left[-2\pi i \left(\Delta k_x a n_x + \Delta k_y b n_y + \Delta k_z c n_z \right) \right]
\]

\[
= \sum_{n_x=0}^{N_x-1} \exp\left(-2\pi i \Delta k_x a n_x \right) \sum_{n_y=0}^{N_y-1} \exp\left(-2\pi i \Delta k_y b n_y \right) \sum_{n_z=0}^{N_z-1} \exp\left(-2\pi i \Delta k_z c n_z \right)
\]
Shape Factor

\[S(\Delta k) = \sum_{n_x=0}^{N_x-1} \exp(-2\pi i \Delta k_x a n_x) \sum_{n_y=0}^{N_y-1} \exp(-2\pi i \Delta k_y b n_y) \sum_{n_z=0}^{N_z-1} \exp(-2\pi i \Delta k_z c n_z) \]

- Each sum is a truncated geometric series of the form:

\[S = 1 + r + r^2 + r^3 + r^4 + \ldots + r^{N-1} = \frac{(1 - r^N)}{1 - r} \]

where, e.g., \(r = \exp(-2\pi i \Delta k_x a) \)

\[\sum_{n_x=0}^{N_x-1} \exp(-2\pi i \Delta k_x a)^{n_x} = \frac{1 - \exp(-2\pi i \Delta k_x a N_x)}{1 - \exp(-2\pi i \Delta k_x a)} \]

\[S^* S(\Delta k_x) = \frac{1 - \exp(+2\pi i \Delta k_x a N_x)}{1 - \exp(+2\pi i \Delta k_x a)} \frac{1 - \exp(-2\pi i \Delta k_x a N_x)}{1 - \exp(-2\pi i \Delta k_x a)} \]

\[S^* S(\Delta k_x) = \frac{\sin^2(\pi \Delta k_x a N_x)}{\sin^2(\pi \Delta k_x a)} \]
Shape Factor

- The denominator varies slowly with respect to the numerator, approximation leads to:

\[S^*S(\Delta k_x) = \frac{\sin^2(\pi \Delta k_x a N_x)}{\sin^2(\pi \Delta k_x a)} \approx \frac{\sin^2(\pi \Delta k_x a N_x)}{(\pi \Delta k_x a)^2} \]

- The envelop function:

\[E(\Delta k_x) \equiv \frac{1}{(\pi \Delta k_x a)^2} \]

- As N becomes large:
 - Height of main peak \(\uparrow \propto N^2 \)
 - Width of main peak \(\downarrow \propto (aN)^{-1} \)
 - Height of satellite peaks \(\downarrow \)
 - Satellite peaks get closer
Shape Factor
Thin foil effect – ‘Relrod’

- Reciprocal Lattice Rods (Relrod)

- Streaks may also occur along x or y direction if the dimension is small.
- Streaks are the reason why exact orientation of a crystal is not possible with spot diffraction pattern.
Shape Factor

\[I(\Delta k) = |\psi(\Delta k)|^2 = |F(\Delta k)|^2 \frac{\sin^2(\pi \Delta k_x a N_x)}{\sin^2(\pi \Delta k_y a N_y)} \times \frac{\sin^2(\pi \Delta k_y b N_y)}{\sin^2(\pi \Delta k_y b)} \frac{\sin^2(\pi \Delta k_z c N_z)}{\sin^2(\pi \Delta k_z c)} \]
Shape Factor

- Example: Guinier-Preston (GP) zones - Al-4%Cu alloy

- Fe-2.9%Mo alloy

\[
\psi(\Delta k) = \left[F_{Al-Cu}(\Delta k) - F_{Al}(\Delta k) \right] \sum_{r_g}^{disk} (-2\pi i \Delta k \cdot r_g) + F_{Al}(\Delta k) \sum_{r_g}^{whole} (-2\pi i \Delta k \cdot r_g)
\]
Deviation Vector

• Express Δk as the difference of an exact reciprocal lattice vector, g, and a “deviation vector”, s:

$$\Delta k = g - s \quad \text{(*)}$$

$$g = \Delta k + s$$

$$s = s_x \bar{x} + s_y \bar{y} + s_z \bar{z}$$

• Effect on Shape Factor:

$$S(\Delta k) = \sum_{r_g}^{\text{lattice}} \exp(-2\pi i \Delta k \cdot r_g) = \sum_{r_g}^{\text{lattice}} \exp[-2\pi i (g - s) \cdot r_g] \quad (g \cdot r_g = \text{integer})$$

$$S(\Delta k) = \sum_{r_g}^{\text{lattice}} \exp(-2\pi i \times \text{integer}) \exp[+2\pi i s \cdot r_g] = \sum_{r_g}^{\text{lattice}} \exp[+2\pi i s \cdot r_g]$$

$$S(\Delta k) = S(-s)$$

• Effect on Structure Factor:

$$F(\Delta k) \approx F(g) \quad (s \cdot r_k \text{ is small})$$

* $\Delta k = g + s$, more general
Kinematical Intensity

\[I(\Delta k) = |\psi(\Delta k)|^2 \]

\[= |F(g)|^2 \frac{\sin^2(\pi s_x a N_x)}{\sin^2(\pi s_x a)} \times \]

\[\frac{\sin^2(\pi s_y b N_y)}{\sin^2(\pi s_y b)} \times \frac{\sin^2(\pi s_z c N_z)}{\sin^2(\pi s_z c)} \]

- Shape factor, \(S(s) \), depends only on \(s \).
- Structure factor, \(F(g) \), depends only on \(g \).
Deviation from Exact Bragg Condition

- **Exact Bragg condition:** \(k - k_0 = g \)
- **Deviation, \(s \):** \(k - k_0 = g + s = S \)

\[
\psi(\Delta k) = F(\Delta k) \sum_{r_g} \exp\left[-2\pi i (g - s) \cdot r_g \right] \quad \text{Since } g \cdot r_g \text{ is an integer}
\]

\[
\psi(s) = F(g) \sum_{r_g} \exp(2\pi i s \cdot r_g)
\]

- **Definition:**
 - if \(s < 0 \): reciprocal lattice point outside Ewald sphere
 - if \(s > 0 \): reciprocal lattice point inside Ewald sphere
Kikuchi Lines

\[2\theta = \beta - \alpha \]

Diffraction cone
Kikuchi Lines

Pair of a “bright” and “dark” line

\[I_{K_1} = I_1(1 - c) + I_2c = I_1 - c(I_1 - I_2) \]
\[I_{K_2} = I_2(1 - c) + I_1c = I_2 + c(I_1 - I_2) \]

Figure 3.37 Kikuchi line formation by inelastic scattering of electrons at point P in a single crystal. The lower diagram illustrates the intensity of light on the view screen, which is affected by the inelastic scattering at P.
Kikuchi Lines

- The dashed line right between the excess line and the deficient line marks the intersection of the reflecting planes with the plane of the diffraction pattern.

- The spacing D_{hkl} of the two lines corresponds to $2\theta_B$, thus $D_{hkl} = 2L\theta_B = \lambda L/d_{hkl}$.
 \[\Rightarrow D_{hkl} \text{ equals the spacing between the spot of the transmitted beam and the spot of the } (hkl) \text{ Bragg reflection} \]

- When the specimen is oriented exactly for Bragg reflection at the (hkl) planes, the deficient Kikuchi line intersects the transmitted beam, while the excess Kikuchi line intersects the Bragg reflection.
Kikuchi Lines

• Pairs of parallel lines consisting of one bright and one dark lines in diffraction mode

• Electrons are scattered **elastically** (diffraction spots) or **inelastically** (diffuse in all directions, with maximum intensity along incident beam direction and decreasing intensity with increasing angle)

• The intensity decreases with increasing scattering angle.

• **Inelastically scattered electrons** (assumption: negligible energy-loss) act as a **new primary beam** which can undergo Bragg diffraction (in all three dimensions) causing diffraction cones

• Kikuchi lines exist only in thick samples

• Can be used for accurate determination of orientation (ca. 0.1 degree instead of typically 4 degrees in spot patterns)
Diffraction Condition

- **Exact Bragg**
 (strong “two-beam” condition)
 \[s = 0 \]
 (dynamic theory required!)

- **Symmetric case**
 (Laue condition)
 \[s < 0 \] with \(s = -\theta g \)
 (kinematic theory !)
Kinematical vs. Dynamical

Kinematical theory

\[\psi(\Delta k) = F(\Delta k) \sum_{r_g} \exp(-2\pi i \Delta k \cdot r_g) \]

- \(I_d \ll I_0 \) (weak scattering)
- Thin samples
- Small deviation from exact Bragg condition (required):
 \(\Delta k = g + s \)
- Amplitude \(A \) of the diffracted beams are summed up taking phase shifts into account

Dynamical theory

\[\psi(s) = F(g) \sum_{r_g} \exp(2\pi is \cdot r_g) \]

- \(I_d \approx I_0 \) (multiple scattering)
- Thick samples
- Exact Bragg condition
- Considers diffraction from beam diffracted back into the primary beam
- Uses Schrödinger equation (Howie-Whelan Eqn)
Home Work

- Due date: April 6th.